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ABSTRACT

Vibratory Stress Relief in Mild Steel Weldments

S. Shankar, Ph.D.
Oregon Graduate Center, 1982

Supervising Professor: William E. Wood

The influence of resonant and sub—resonant frequency wvibration
on the longitudinal residual stresses, in A—36 mild steel weldments has
been studied. Residual stress analysis was carried out using section-
ing, x—ray and blind-hole—drilling techniques. The hole—drilling
method was modified to take into account the effect of local plastic
vielding due to stress concentration and the machining stresses, with
a resultant accuracy comparable to that obtained by the sectioning
method. BAs a result of the vibratory treatments, residual stress re-
distribution occcurred near the weld; the peak stresses were decreased
by up to 30%. The resonant frequency wvibration had a more pronounced
stress redistribution as compared to the sub—resonant frequency wvibra-
tion. Transmission electron microscopy studies indicated local plastic
deformation as the mechanism by which this stress reduction occurred.
Constant amplitude axial fatigue experiments on samples machined from
regions adjacent to the weld showed that both the vibratory techniques

did not induce any fatigue damage.



OBJECTIVE

Vibratory methods have been used for the last several decades to
modify internal stresses in castings, forgings and welded structures.
In recent years, a process called wvibratory stress relief (VSR) has
been applied with increasing success to attain shape stabilization and
to control distortion. Attempts to use VSR methods for stress relief
or stress redistribution to guard against service failures such as
fatigue and stress corrosion cracking have met with limited success.
Although to date several studies have shown that wvibrations do change
residual stresses, there have been few fundamental studies undertaken
to establish the mechanism(s) by which wvibratory methods alter the
residual stresses during welding. The lack of fundamental analysis
combined with suggested operating practices that were contradictory in
nature has increased the skepticism about the success of the technique
in reducing residual stresses. A better understanding of the process
in terms of its mechanism(s) together with the attendant effects is
essential if VSR is to be used as a viable technique for altering
residual stresses.

The objectives of this investigation were to study:

1. The conditions under which VSR works;

2. The effect of VSR on residual stresses and the extent

of stress relief;



3. The mechanism(s) by which VSR brings about the stress

relief; and finally,

4. Whether or not VSR causes fatigue damage.



CHAPTER 1

INTRODUCTION

Residual stresses are of concern to producers and users of all
types of machinery and structures and may cause dimensional instabil-
ity during machining, contribute to low—stress brittle fracture and
reduce fatigue strength. Those who make and use welded fabrications
must be particularly concerned with the effects of residual stresses
because of the relatively high residual stress levels inherently
produced with most common welding processes.

When it is desired to reduce residual stresses in a fabrication
to as low a level as possible, the most widely used and successful
method is thermal stress relief. Specifying temperature, time and heat-
ing and cooling rates are all that is usually necessary to guarantee
reduction of residual stresses to reliably low levels throughout a
fabrication.

Thermal stress relicf, however; can have cecrtain adverse cffeets
such as scaling, discoloration, loss of finish, distortion, metal-
lurgical changes in the microstructure, etec. It is also, in some
instangces,; time consuming and;, with inoreasing energy coets,; wvery
expensive. Since residual stresses are developed to some degree in
virtually every machining operation, there are many situations where
it would be adwvantageous to stabilize the part at several stages of

fabrication. Thermal cycling would be impractical in these cases.



Also, large components like gas storage tanks, bridge structures, and
rail ear panels are impeossible or impractical te stress relieve by
thermal treatments. In this background, an alternative technique of
stress relief '? that employs mechanical vibration, has emerged.

This process is called vibratory stress relief (VSR) or wvibratory
metal stabilization (VMS). Over the last fifteen years, this method
of stress relief has evolved from a little—known art into a basic
process, and one which for some industries is now well tried and
established as an alternative to thermal treatment for stabilizing
castings, fabrications, and bar components. *°

The major interest in wibrational stress relief has been its

relative simplicity compared with thermal stress relief. For instance,

compared with thermal stress relief equipment commercially available,
vibratory stress relief equipment is far less expensive, requires con-
siderably less time for the stress relief treatment, is more portable,
generally occuples less floor space, and causes no oxlide scale forma—
tion. However, there is little experience in predicting the effect-
iveness of the treatment and there is little quantitative infoermation
ocn the effectiveness, use, or magnitude of any effects and the mechan-
ism involved. 1In the absence of such quantitative information, it is
diffioult to determine when and where wibratory strese relief may be
effectively applied, particularly in massive complex fabrications.

The present study was undertaken to provide some quantitative
data on the vibratory stress relief process applied to A—36 mild

steel butt welds. The wvarious phases of this study focused on the



analyesis of wvibration, residual stress analysis using sectioning,
¥x—ray and blind-hole—drilling techniques, and the effect of wvibration
on the microstructure and the mechanical properties of the weldments.
This comprehensive study is unique in that it combines wvibration
methodology, residual stress analysis, microstructural analysis,

and mechanical testing.



CHAPTER 2
BACKGROUND

2.1. Vibratory Stress Relief

Vibration, in its wvarious forms, has been used to stabilize parts
for many years. For example, in the ancient art of “hammer anneal-
ing,” a high amplitude, gradually decaying wvibration was induced by
repeated hammer blows. Large castings, at one time, were stabil-
ized by dropping them from a considerable height into a pile of sand.
In the “natural aging” process, the workpieces were stored outdoors
for a considerable period of time. The metal expanded and contracted
with changes in ambient temperature at a very low frequency of
one cycle per day. The nature of the wibrations produced in these
methods made them uncontrollable, unpredictable, and too slow. Gradual
experimentation to make the process more repeatable by the control and
monitoring of wvibrations used has paved the way to the state—of—the—
art wvibratory stress relicf techniques.

The actual process of wvibratory stress relief 1s simple and con-
sists of inducing a metal structure to be stabilized into one or more
resonant or sub—resonant vibratory states using high foroe exciters.
Vibrational stress relief equipment commercially available generally
consists of a variable—speed motor driving eccentric weights (also
known as the wvibrator) and its associated power supply and control

equipment.



The vibratione can be imparted to the workpiece in two waye.
If the structure is sufficiently large, the vibrator can be clamped
directly to it and the motor energized to vibrate the workpiece. The
workpiece is isolated from the ground by supporting on rubber or foam
pads, so that the vibrations are not lost or taken up by the support-
ing structure. Another way of imparting wvibrations utilizes a special
vibration table. Here the vibrator is attached to the table top which
is freely suspended on inflatable rubber pads. The workpiece is
clamped to the top of the takle and the motor energized to vibrate
the table and, hence, the workpiece. Small parts, whose natural fre-
quencies lie outside the range of the wvibrator, can be effectively
treated using the vibration table. By combining the small workpiece
with the table, the natural frequencies of the entire combination can
be brought down to be successfully vibrated. An accelerometer
clamped to the structure or the table i1s used to find the natural
frequencies. The frequency of vibration depends upon the material of
the workpicee; its size and shape. In general,; the frequencies
encountered are less than 100 Hz. The wvibratory treatment itself 1is
short, usually less than 30 minutes.

Currently, there are two types of vibratory treatment in practice.
In the first type, the unit is attached to the structure and is
energized and scanned very slowly from zero to its maximum
frequency (e.g., 0-100 Hz in about 8 minutes). The response of the
structure is monitored and the resonant frequencies noted. Usually

two or three such frequencies exist. The vibrator is then turned off



and returned to a speed that corresponds to the first low resonant
frequency of the structure. The wibration is allowed to continue for
a given length of time (usually about 10 minutes), at the end of
which the frequency is slowly ramped out of the rescnant condition
until the next higher resonant frequency is found and the process is
repeated.

In the second type of wvibratory technique, after the initial

scanning to determine the resonant frequencies, the wibration is held

at frequencies just below each resonant frequency. Usually, the work—

piece 1s vibrated at a frequency 10 Hz below the resonant frequency.
One aspect of this study deals with the effectiveness of these two

practices.

2.2. Mechanism of Stress Relief by VSR

During a thermal stress relief treatment, the yield point of the
material is substantially lowered, allowing the stresses (which may
now well exceed the new, high temperature wyield point) to cause
plastic flow and reduce the level of residual stresses. However,
the mechaniesm of stress relief by wibration is not fully understood.
Currently, there are two major hypotheses proposed to explain the
mechanism of stress relief by vibration. O©One hypothesis draws an
analogy between stress relief by wvibration and by heat treatment by
relating it to the displacements of the atoms that build up the

1,31-33

crystal lattice. The low—frequency wvibrations are supposed to

impart sufficient energy to the atoms to enable them to take up new



positions. This theory based on internal friction can presumably
be applied to materials that display a pronocunced tendency towards
natural aging. However, there seems to be no experimental evidence
to support this conjecture.

The other hypothesis attributes the stress relief due to the
process of plastic deformation. /> Unlike the previous supposition,

36-10 have shown that during

a number of experimental investigations
vibrational treatments, the combined residual and cyclic stresses
exceed the yield point of the material, resulting in residual stress
reduction by plastic deformation. However, none of these investiga-
tions presented direct observations of plastic deformation.

In the present investigation, an attempt is made to document

the occurrence of plastic deformation in the wvibrational treatments.

2.3. Residual Stress Measurement Techniques

An accurate assessment of the efficiency of any stress relief
trecatment involves mecasurcment of residual stresscs before and after
the treatment, and wirtually every conceivable method of monitering
displacements has been employed. For ease of reference these can be
claseified into the following groups:

1. Mechanical

2. Moiré and associated techniques

3. X-ray

4. Ultrasonic

5. Magneto—elastic

6. Analytical
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A complete summary of all the published literature on this subject has
been adequately covered in reviews. °°

By far the most practical, well—developed, and hence widely
used techniques are sectioning, blind—hole—drilling (both mechanical
types), and x—ray. In the present study, the first two methods were
widely used, together with x—rays (to a limited extent), for
residual stress analysis. Since accurate residual stress analysis
is a key part of this investigation, and a shortcoming of many previ-
cus studies, a brief description of the methodology, merits, and

shortcomings of these three techniques are outlined in the following

sections.

2.3.1. Sectioning Method

All mechanical techniques involve some degree of destruction. In
particular, the sectioning technique is completely destructive and
herein lies its major disadvantage. This method has been success-
fully applied to accurately measure uniaxial and biaxial states of
stress and to a limited extent triamxial residual stress. The method
consists i1n carefully sectioning the workpiece in which residual
stresses are to be determined into smaller strips and measuring the
change in strain in each indiwvidual strip. The series of strains
thus measured gives the stress distribution in the entire workpiece,
using the formula o = Ee. The actual geometry of slicing and the
formulae to be used depend on specific situations. *'° The method, apart

from being destructive, is wery time consuming since the cutting



12.

process should be done slowly, coocling the specimen with a jet of

coolant te ensure that cutting in iteelf does net proeduce any strainse.

In the present investigation the accuracy of the sectioning tech-
nique used was about * 3.5 MPa in mild steel samples. Due to this
high accuracy of stress measurement, the sectioning technique was

used as a standard against which the other stress measurement tech-

niques were compared.

2.3.2. X—Ray Diffraction Method

The x—ray diffraction procedure for determining the surface
residual stresses is well established.!®’® The fundamental theory
of stress measurement by means of x—rays is based on the fact that
the interplanar spacing of the atomic planes within a specimen is
changed when subjected to stress. A change Ad ;,,, in the interplanar
spacing dpx; wWill cause a corresponding change, A8, in the Bragg
angle of diffraction by the family of planes. The strain Ad/d can
be measured by the change in the diffraction angle and the stress
can be obtained from the strain with formulae derived from linear
isotropic elastic theory.

In practice the angle of diffraction of x—rays is measured
either by a back reflection camera or by a suitable diffractometer,

13

with a maximum accuracy of the order of * 0.02 degree. This means

that the value of the lattice spacing can be determined ta an accuracy

of the order of * 0.0002 i, which in turn allows the calculation of

the residual stresses to + 14 MPa. Thus the x—ray technique has less



accuracy than the sectioning method. Further, additional errors due
to instrument misalignment and uncertainty in the elastiec constants
can bring the total error to * 34.5 MPa which is about 12% in mild
steels. The x—ray technique is designed for the measurement of
macrostresses, but microresidual stresses (due to inhomogeneities

in the microstructure) can also be detected by x—rays and these

can interfere with the accuracy of the data. Thus, in some
materials, including plastically deformed steel, interpretation

of the results may be difficult.

However, it is completely non—destructive and determines the
total elastic stress present in the sample for a given location and
direction independent of the sample gecmetry without relaxing the
stress being measured. Another advantage of this technique is that
the area over which the stress is averaged can be wvaried by limiting
the size of the x—ray beam. Using a small beam size (typically of
the order of 2 x 2 mm), localized stresses adjacent to welds or

fasteners can be measured.

2.3.3. Blind—HoleDrilling Method

13.

It is possible to determine residual stresses by drilling a hole

in a speoimen and measuring the resulting change of strain in the

14-17

vicinity of the hole. This method, also known as hole—

relaxation or hele—drilling method, is the least destructive of the

mechanical methods. A hole of only a few millimeters in diameter and
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depth may suffice for the stress measurement. Since this amount of
destruction can sometimes be tolerated, the methed is semidestructive
in nature. It is a very simple and economical method and can be used
to measure stresses over a very small area in a very short period of
time.

In actual practice, a strain gauge rosette which is commercially
available is bonded to the specimen with the center of the rosette
coinciding with the point where stresses are to be measured. A hole
is then drilled at the center of the rosette. From the strain read-
ings taken before and after the drilling of the hole, the prinecipal
stresses in the plate before the hole was drilled is computed.

Both uniaxial and biaxial stresses can be measured with this tech-

® The principle of this technique is based on the work of

nique.’
Kirsch '’ on the stress distribution around a circular hole in a
plate subjected to unidirectional tension. By superposition, the
same principle can be extended to biaxial stress fields. ** %7

The relaxed strains measured by the gauges on the surface of the
structurec arc dependent on the depth of hole until this cxcceds a
dimension where strain changes do not affect the surface. It has
been very clearly shown 7''%21:22 that full relaxation is obtained
at the surface for a depth equal to the hole diameter. Thus; in
practice, where the components of interest are usually thick compared
with the hole diameter, blind holes are formed; hence the name blind—
hole—drilling.

It is imperative that the method employed to form the hole should

not introduce any stresses. The rotating cutters or end mills commonly
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employed to drill the hole can introduce appreciable stresses.?l™23

?% or abra-

An alternate technique of hole formation, viz., airbrasive
sive jet ?' machining seems to be very effective and the machining
strains measured are well within the accuracy of the strain recording
equipment. However, not only is the equipment used in this method
very expensive but the method itself is more time consuming to drill
a hole of given size and in part to handle the ancillary equipment. ?3/?%!
Further, drilling the hole in a stress system introduces a
localized discontinuity or stress raiser. For instance, as shown
in Figure 1, in a uniaxial stress field, the stresses (S;) at right
angles to the direction of the applied stress, reach 3 times the
value of the yield stress, near the edge of the hole. In the direc-
tion of applied stress, the stress (S,) must always relax to zero at the
edge of the hole. In an equal biaxial field, the stresses reach
twice the walue of yield stress. Thus, 1f the stress to be measured
exceeds 1/3 yield stress for the material in the uniaxial case, and
1/2 yield stress in the cequal biaxial casc;, there will be some
plasticity at the edge of the hole. This will affect the Poisson
ratio, locally, and errors will be introduced.
However; if an acourate assessment of the machining errors and
errors due to local yielding is made, blind—hole—drilling technique

can be employved in its current form to accurately measure stresses

close to the yield stress for the material.
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2.4. Residual Stresses in Butt Welds

The theoretical study of the development of residual stresses
when two plates are butt welded dates back tec the 1930’s and today
there exists an excellent correlation between the theory and experi-—

mental results. 2°72°

It is well known that weld shrinkage in butt
weldments results in large tensile longitudinal residual stresses
adjacent to the welds, balanced by compression elsewhere in the section
(Figure 2). Typically, the longitudinal residual stresses close to the

weld approach yield point of the base metal, and the stress

distribution is symmetrical across the weld center line.
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Figure 2. A schematic plot of longitudinal residual stress vs. distance

from the weld center line. Syis the yield stress of the

base material.
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CHAPTER 3

EXPERIMENTAL

3.1. Material Selection

In this investigation, mill plates of ASTM designation A—36
constructional steel were used. The chemical composition of the as—
received steel is given in Table I. All the plates used to make the
butt weldments were first annealed to completely relieve the as—
received residual stresses. The annealing treatment consisted of
heating the plates for one hour at 870°C in an inert atmosphere,
furnace cooling to 540°C and then air cooling to the room temperature.
The tensile properties of the as—received and the annealed A—36 steel
are also shown in Table I. Two SAE 1018 steel plates were alsoc giwven

the previous annealing treatment.

3.2. Weldment Preparation

In order to verify and confirm the pattern of longitudinal
residual stress distribution in a butt welded sample, the annealed
SAE 1018 steel plates, each 305 x 102 x 6.4 mm, were butt welded using
3.2 mm E-70241 eleoctrode:. No weld joint preparation was made.

The annealed A—36 steel plates were butt welded using 4 mm
E—6013 electrodes. The weld joint preparation is shown in Figure 3.

Double—vee bevels were used to minimize the distortion and to ensure



Table I.

CHEMICAL COMPOSITION (IM WT. PCT.) AND MECHANICAL PROPERTIES
OF A-36 MILD STEEL

Chemical Composition

c Mn P S

0.23 0.44 0.008 0.029

Mechanical Properties

As Received Fully Annealed

Yield Strength (MPa) 3069 280
Tensile Strength (MPa) 470 431
Elongation % 28.0 38.0

20.
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Figure 3. Schematic of weld-joint preparation.
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uniform through thicknees strese distribution in the weldment.?’
Distortion was further reduced by clamping the plates by the edge.
The clamping was such that the lateral motion of the plates was
unhindered during welding which would result in low values of trans-
verse stresses. A total of six butt welds were made of which three
were 914 x 406 x 12.7 mm and the other three were 305 x 508 x 12.7 mm
in size.

In order to study the vibratory stress relief of a heavy struc-
ture without using the wvibration table, the following tension weldment
was prepared (Figure 4). An annealed A—36 mild steel plate 762 x 457
x 19 mm was first welded along weld 1 to a strongback with about
12.5 mm clearance between the two. The plate was then heated to
about 143°C and while still hot, was welded along weld 2 to the
strongback. The plate, on cooling, contracts and develops uniform,
yield point magnitude tensile stresses sufficiently removed from the

welded ends.

3.3. Vibration Table Analysis

The wvibratory treatments were ocarried out using a vibration table
(Figure 5). The table top was 1830 x 1219 x 25.4 mm aluminum alloy
rlate, braced rigidly by several steel I beams. It was mounted on
four inflatable rubber pads which helped to isclate the table from
the ground during vibrating. The wvibrations were produced by a bottom
center bolted DC motor containing eccentric weights mounted on each

end of its shaft.
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Grid lines 254 mm apart crisscrossed the surface of the table.
The motor was energized to selected frequencies up to 40 Hz, and at
each frequency the amplitude of wvibration and the phase difference of
the amplitudes were measured at the intersecting points of grid lines.

A schematic of the setup used to monitor the wibrations is shown
in Figure 6. Two sensitive piezocelectric transducers, one fixed and
the other movable, were used to monitor the amplitudes and phase
differences. Filters were used tc obtain a clear sinusoidal signal

free from higher harmonics and interfering waves from the boundaries

of the table.

3.4, VSR Treatment of Welded Specimens

The weldments were subjected to vibratory stress relief treat-
ment by belting rigidly teo the wvibration table. A good mechanical
contact was necessary to efficiently transfer vibrations from the
table to the weldment. The duration of the wibratory treatment was
a fixed time of 20 minutes, and the resonant frequency was maintained
manually.

The effect of weldment location on the wvibration table was studied
using the three 305 x 508 x 12.7 mm weldments. ©Of the three
weldments, one was vibrated by clamping to the center of the table
and the other two at two corners of the table. The frequency of
vibration in all the three cases was 40 Hz.

Additionally, the effect of fregquency of vibration treatment was

studied using the three 914 x 406 x 12.7 mm weldments. One



(GRID LINES):
VARIABLE
TRANSDUCER
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FIXED
TRANSDUCER
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OSCILLOSCOPES
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PASS l L
FILTER
BAND
PASS
FILTER

Figure 6. Schematic of the setup used for the vibrational analysis

of table top.
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weldment was vibrated at 40 Hz, the second at 30 Hz and the third was
net wibrated and was used as a contreol.

The 400 kg weldment shown in Figure 4 was wvibrated by clamping
the wibrator directly to it. The frequency of wvibration was 37 Hz,
a fundamental wvibrational frequency of the assembly. The weldment
and the vibrator assembly were placed on heavy duty rubber pads to

iscolate the workpiece. The duration of treatment was 20 minutes.

3.5. Residual Stress Measurement
Residual stresses in weldments were determined by sectioning,

®—ray, and blind-hole—drilling techniques.

3.5.1. Sectioning

This technique of residual stress measurement was used in all
the weldments. The surface of the SAE 1018 butt welded specimen was
cleaned and a total of seven resistance strain gauges (type EA—06—
125 AD—120 supplied by Micro Measurements Co.) were then bonded to
the sample as shown in Figure 7. The initial readings from the strain
gauges were zerced using a Vishay Portable Strain Indicator. Next,
two sclioces; cach 32 mm wide, were out from the welded plates; aleng
the dotted line as shown in Figure 7. The sectioning was done on a
Micromech wet cut—off saw. Strain readings were once again taken
after the sectioning.

In the 914 x 406 x 12.7 mm weldments, strain gauges (CEA—06—125

VI—120) were bonded on a 127 mm square area in the middle of each
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weldment (Figure 8B). This square region was then sectioned off using

a saw mill operating at a slow speed. Care was taken not to heat the
area by directing a jet of coolant at the cutting edge of the saw
blade. Strain, as well as resistance, measurements were made from
these strain gauges before and after secticning. A Vishay 1011 port-
able strain indicator together with a Vishay 1012 portable switch and
balance unit were used for strain measurements. Resistances from the

strain gauges were measured using a standard potentiometer.

In the 305 x 508 x 12.7 mm samples used for the blind-hole—
drilling experiments, sectioning technique was employed as a check for
the residual stresses measured after vibration. 1In these samples a

strip 25.4 mm wide was cut across the weld.

3.5!24 x-Ray

Further measurements of residual stresses, using an x—ray methed,
were made in the 127 mm square pieces obtained from the sectioning
technique. The sin’y technique'’ employed for residual stress meas-
urement used six § angles at equal values of sin® ¢ from ¢ = 0 to ¢ =

45 degrees.

3.5.3. Blind—Hole—Drilling

Residual stresses in the 305 x 508 x 12.7 mm weldments were
determined by the blind-hole—drilling technique. Strain gauge ros—
ettes (type EA—06—125 RE-120 supplied by Micro Measurements Co.) were

bonded at predetermined locations on either side of the weld. Before
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vibrating each weldment, holes approximately 3 mm in diameter and
depth were drilled at the center of rosettes mounted on one side of
the weld to determine the residual stresses in the as—welded condi-
tion. The weldments were then individually wvibrated at 40 Hz for 20
minutes by clamping them at several locations on the wvibration

table. Holes were again drilled in the rosettes on the other side

of the weld to obtain the residual stress distribution after vibra-
tion. A Photolastic model RS—200 milling guide was used to align

the drill bit exactly at the center of the rosette and alsoc to rigidly
guide the drill bit to produce consistently straight, true, and clean

holes.

The blind—hole—drilling technique was also employed to determine
the effect of wibratory treatment on the residual stresses in the
tension plate of Figure 4. Residual stresses before vibration were
determined using the strain gauge rosettes at A, B and C. After the
vibratory treatment the residual stresses were again measured using

rosettes A’, B’ and C’.

3.6. Electron Microscopy

In order to detect the evidence of plastic deformation, 1 mm
thick coupons were sectioned off from the 19 mm A—36 tension plate.
These coupons were cut from areas 13 mm around the rosettes. They
were then ground on abrasive wheels to a thickness of 0.25 mm.
Further thinning to about 75 microns was done by electrolytic polish-

ing. Disks of about 3 mm in diameter were punched out carefully for



Jet polishing. Both the electrolytic and the jet pelishing were done
at about 5°C in a solution of 135 cc of glacial acetic acid, 25 g of
chromium trioxide and 7 cc of distilled water. The samples were
studied in a Hitachi HU-11B3 electron microscope at an operating

voltage of 125 kV.

3.7. Mechanical Testing

Tensile and fatigue experiments were carried out using the
samples machined out of the three 914 x 406 x12.7 mm weldments. A
10,000 kg Instron Lawrence dynamic test system was used for all test-
ing. The samples were sectioned off of regions 12.7 mm from either
side of the weld center line. A total of 4 tensile and 16 fatigue

samples from each of the three weldments were tested.

3.7.1. Tensile Testing

Tensile bars of 6.35 mm diameter were machined according to the

ASTM specification A370-77. Testing was carried out at a crosshead
speed of 1 mm/minute. Strain was measured with a strain gauge
extensometer.

3.7.2. Fatigue Testing

Constant amplitude axial fatigue tests were conducted using
5.08 mm diameter fatigue samples satisfying the ASTM specification
E466—76 (Figure 9). The surface of all the samples was finely

polished using a 600 grit emery cloth. The tests were performed in

32.
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air at room temperature at a frequeney of 30 Hz and with an R ratio
of 0.1. Samples that did not fail after 10’ cycles were reused again
at higher stress levels. This method of testing is known as the

staircase fatigue testing.

34.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1. Vibration Analysis

The vibration table was vibrated, with the wvibrator clamped at
three different locations on the table, wviz., the edge, the corner
and the center of the table. At each position, the table was
vibrated at 10 Hz, 20 Hz, 30 Hz and at the resonant frequency of 40
Hz. Beyond 40 Hz, the motion of the table was extremely complex. At
each frequency a plot of iscamplitude lines together with their phase
difference as measured on the table was prepared. These plots were
helpful in characterizing the motion of the table. Figures 10, 11
and 12 show the schematics for wvarious positions and frequencies of
the wvibrator. In all these figures the phase difference between the
solid and the dashed line is 180°.

First, the wvibrator was clamped to a side of the table as shown
in Figure 1l0a. At 10 Hz, the motion of the table was an oscillatory
tvype, as though hinged along a nodal line roughly a third of the
table length away; Figure 10b. The nedal line moved away ac the
frequency of the vibrator was increased. At a frequency of 30 Hz it
was approximately two—thirds of the table length away (Figure 10c).
Beyond 30 Hz, there was excessive noise coupled with wioclent motion

of the table, which did not permit making measurements.
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Figure 10. Schematics showing , (a) the position of vibrator on the table,
(b) iso-amplitude lines at 10 Hz, and (c) iso-amplitude lines

at 30 Hz. The numbers are amplitudes of vibration in millimelers.
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Figure 11. Iso-amplitude lines at (D) 10 Hz, (¢) 20 Hz, and (d) 30 Hz,
when (2) the vibrator is clamped to a corner of the table.
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Figure 12. Motions of the table when vibrator was clamped to the center of
the table and vibrated at (a) 10 Hz, (b) 30 Hz, and (c) 40 Hz.
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The table showed similar oscillatory types of motion when the
vibrator was clamped to a corner (Figure 1la). The nedal line moved
away from the corner to which the motor was clamped, Figures 1lb and
1llc, as the frequency was increased. However, at 30 Hz, the motion
was complex and contained two nodal lines, one close to the motor,
the other closer to the opposite corner (Figure 11d). Once again,
increasing the frequency beyond 30 Hz resulted in excessive vibration
amplitude of the table and hence, no measurements could be taken.

The motion of the table, when the motor was clamped at the
center, was quite interesting. As shown in Figure 12a, at 10 Hz, the
entire table moved up and down about its unvibrated positien, with a
constant peak—to—peak amplitude. At 20 and 30 Hz, the motions of the
table were identical, a rocking type about the diagonal. Figure 12b
shows such a type of motion, when the table was wvibrated at 30 Hz.

It was possible, now, with the motor at the center, to increase the
frequency to 40 Hz. The fact that this was a fundamental resonant
frequency of the table was confirmed by a large increase in the accel-
eration. Figure l2c¢ shows a flexing, buckling type of motion of the
table at 40 Hz. With the exception of this particular case, the

motion of the table was a rigid body motion, where the whole table
vibrated asc a body:. ©On the other hand, the flexible body motion schown
in Figure 12c¢ produced waves of tension—compression necessary to
affect a change in the state of residual stress. A rigid body motion,
from the point of view of stress relieving by actual plastic deforma-

tion, seems useless. Indeed in section 4.2.3., the effectiveness of



flexural motion upon stress relieving has been clearly demonstrated.
Also, recently one of the manufacturers of the commercial wvibratory
stress relief equipment has advised the use of a “motion sensing

transducer” which reports only the flexural motion in a workpiece.

4.2. Residual Stress Analysis

A detailed description of the ecalculation of residual stresses
by the blind—hole—drilling method is giwven in Reference 41. The
measured wvalues of relaxed strains from the three gauges in the
rosette (Figure 13) and the diameter of the drilled hole are used to

calculate the principal stresses using the following equations:

40.
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Figure 13. Strain gauge rosette arrangement and the blind-hole
geometry for determining residual stresses.
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where:

8,, S, = principal stresses
E., €3, E3 = relaxed strains from gauges 1, 2 and 3

angle between S; and gauge 3

B

v = Poisson's ratio
E = Young’'s modulus
R, = radius of the drilled hole

R = radius of the gauge circle.

Once the maximum and the minimum principal stresses and P are known,
the longitudinal, S,, transverse, S,. and the shear stress, S,,, at

the surface of the weldment can be calculated using the equations:

g u+[(u) vs2]” ®)
max 2 2 LT |
= 2 -

g . b, OF [(——5‘* ST) i1 %)
min 2 2 LT J

25
tan 26 = i (8)

L T

where © is the positive angle measured counterclockwise from the
direotion of S, te that of Sy, ¢+ The angle 8 can be determined wusing
the value B. Since a large amount of data was gathered from experiments,
the PRIME computer was utilized to perform the calculations.

In the sectioning technique, longitudinal stresses were calculated

directly from the elastic strains relieved due to the action of cutting.



Stresses were also calculated from the strains obtained by measuring

the resistance change. Strain, then, was calculated using the
equation,
g = AR
(R) x (G.F.)
where:

AR = change in resistance due to sectioning
R = resistance of unloaded strain gauge

G.F. = gauge factor of the strain gauge.

4.2.1. Verification of Longitudinal Residual Stress Pattern

Developed in a Butt Weldment

The leongitudinal residual stresses relieved by sectioning the

1018 mild steel weldment were calculated using the relation,

Q
1}
E=im

where:

o is the lengitudinal residual stress

£ is the strain recorded after sectioning

E is the Young’s modulus.

Figure 14 shows the distribution of longitudinal residual
stress at several distances from the weld center line. Due to the
symmetrical nature of the distribution, only half the curve on cne

side of the weld is shown. The stress distribution closely resembles

43.
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Figure 14. Longitudinal residual stress distribution in a SAE 1018 butt weldment.

Note the similarity of the stress distribution to that in figure 2.
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the general pattern of Figure 2. Also, it can be seen that the mag-

nitude of peak stresses approaches the yield point.

4.2.2. The Effect of Resonant Vibratory Treatment on the

Longitudinal Residual Stress Distribution

The measured relaxed strains and the calculated longitudinal
residual stresses for the three 305 x 508 x 12.7 mm weldments clamped
at different locations on the wvibration table, before and after the
vibratory treatment at 40 Hz, are given in Tables II and III, respect-
ively. These strains were determined by the blind—hole—drilling
method. The average longitudinal stress distribution from the three
weldments, as a function of the distance from weld center line, is
shown graphically in Figure 15. The limitations of the blind—hole—
drilling technique when measuring stresses of the yield point magni-
tude near a weld are clearly evident from this figure. If the loecal
yielding effect due to the stress concentration in the wvicinity of
the hole is ignored; the measured stresses can be greatly overesti-
mated. ™ Measured stresses, i1n the base plate close to the weld,
exceeded the ultimate tensile strength indicating gross overestimation.
Longitudinal residual stressces after vibration were alse measured by
the sectioning technique and are given in Table IV. A comparison of
the longitudinal stresses from Tables III and IV also clearly indicates
the exaggerated stresses obtained by the blind-hole—drilling tech-

nique when corrections for local plasticity effects are not made.
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Figure 15. Longitudinal residual stress distributions as determined

by the uncorrected hole=drilling method.
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Also, errors due to machining stresses caused by the drilling of
the hole using end mills have been reported by other investigators.®'™’
This machining stress, coupled with errcrs due to local yielding,
could wastly change the measured stresses.

Thus, additiocnal experiments were conducted to estimate the
effect of both the machining stresses and the local yielding due to
stress concentration. The details of the experiments and the cor-
rections employed are given in the BAppendix. Corrections were made
for all the relaxed strains obtained by the blind-hole—drilling
method and the corrected values are shown in Takles V and VI. Figure
16 shows a good agreement between the corrected values from blind—
hole—drilling method and the walues from the sectioning technigue
for weldments wvibrated at the resonant frequency of 40 Hz. Similar
agresment also in the case af as—welded weldments i= shown in section
4.2.4. Blind—hole—drilling technique can thus be successfully
employed to measure yield point magnitude stresses, such as those
near welds, when suitable corrections for the machining and the local
vielding errors are made. Figure 17 is a composite of residual
stress distributions before and after the vibratory treatment, where
the stresses are the average walues from the three weldments. Several
peints are evident from this figure. First, the peak stress was
reduced from about 359 MPa to about 276 MPa, a drop of about 30%.

Similar reductions in peak stresses were cbtained by Zubchenko, et al.,

in two separate inveatigntinnn;“"ﬂby Grudz, et al.,“ in mild steel,
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Figure 16. Residual stress distribution in a weldment vibrated at 40 Hz.

LONGITUDINAL STRESS (K.S5.1.)

The stresses determined by the corrected hole-drilling technigue

agree well with those obtained from the sectioning method.
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Stress analysis done by the corrected hole-drilling method.
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aluminum and titanium alloy weldments; and by Weiss, et al.," in a
plain carbon steel weldment.
Second, the residual stresses were not completely eliminated by
the wvibratory treatment, although several Russian authors hawve

' On the other

noticed up to 90% reduction in residual stresses.’
hand, there seemed to be a redistributicon of residual stresses across
the weld. A similar stress redistribution has been noticed by other
investigators. %

Thus, resonant wvibratory treatment when applied to mild steel
weldments resulted in a definite redistribution of longitudinal
stresses, and reduction in the peak residual stresses wvery close to

the weld. The actual mechanism by which the stress reduction occourred

will be discussed in section 4.3.

4.2.3. Effectiveness of the Vikratory Treatment on the Leoecation

of Weldments

An examination of the longitudinal residual stress wvalues from
Table VI shows that due to the rescnant vibratory treatment, all the
three weldments hawve achieved about the same residual stress distri-
bution, regardless of thelir peosition on the table during vibration.
The considerable bending moments and torques noticed on the table at
resonant frequency seem to act along a passing wave rather than a
stationary wave. This would naturally expose any location on the
table to the same amount of bending moment and thus make all the

locations on the wibration table ecually effective for the treatment.



The effectiveness of the treatment, within the length of each
weldment, too, seems uniform. In a 305 mm long weld, the longitud-
inal stresses would remain constant in a region at the center and
begin to decrease toward the ends. Conservatively, the middle 150 mm
long portion of the weld can be assumed teo have uniform stresses,
with stresses decreasing in 75 mm regions on either end. In the
residual stress measurement, holes were randomly drilled in a 100 mm
long region at the center of each weldment. For example, in one
weldment holes closest to the weld were drilled in the middle of
the weldment, while in the other tweo, the holes were drilled 50 mm
on either side of the center of the weld. Similarly, other holes
were drilled on a random basis. Despite the randomness in the loesa-
tion of the holes, there was uniformity of stress redistribution in

all three weldments, at least in the central 100 mm region.

4.2.4., The Effect of Frequency of Vibration on the Longitudinal

Residual Stress Distribution

The three 914 x 406 x 12.7 mm butt weldments were used in the
study of the reole of frequency of wvibration on the residual stress
distribution in the weldments. One weldment was given the standard
resonance treatment at 40 Hz; the second, a sub—resonance treatemnt
at 30 Hz; and the third was not vibrated and was used as a control.
It was decided to monitor the stresses in the weldments using x—ray
and sectioning techniques of stress measurement. For the purpose of

¥x=ray studies, it was necessary to cut ocut a 127 mm square piece from

66.
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the middle of each weldment. Stresses relieved due to this section-
ing were monitored and are given in Table VII for the three weldments
studied. It was assumed that sectioning the 127 mm square pieces
would not significantly relieve the stresses and that most of the
residual stresses would be still locked up in those pieces. However,
as seen in Table VII, and from the residual stress distributions
plotted in Figure 18, it appeared that sectioning has reliewved the
majority of the locked—in stresses and that insignificant amounts of
stress would be left in the 127 mm sguare pieces. Even though the
x—ray analysis showed stresses of the order of 7 to 55 MPa in some
locations, these =tress wvalues were not added onto those obtained
from the sectioning method because of the inherently low accuracy of
stress measurement (about 35 MPa) by this method due te the large
grain size invelved in the samples. Further, the stress readings
were so randomly distributed without any trend of the classic stress
distribution of Figure 2, it was assumed that sectioning had prac-
tically relieved all the residual stresses.

Referring to Figure 18, once again there was substantial reduc-
tion in peak stresses (from about 380 MPa to about 250 MPa) due to
the rescnance treatment at 40 Hz, coupled with stress redistribution
similar in nature to that shown in Figure 17. For the 305 x 508 x
12.7 mm weldments, though there was a general stress reduction due
to the sub—resonance treatment at 30 Hz, wvibrating at rescnant
frequency apparently was more effective than that at a sub—resonant

frequency.
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Figure 18. The effect of frequency of vibration on the longitudinal

residual stress distribution. Stress analysis done by

the sectioning technique.

71.

LONGITUDINAL STRESS (K.S.1.)



72,

As shown in Figure 19, in the case of an as—welded unwvibrated
weldment, the agreement between the corrected hole—=drilling stress
values cbtained from the three 305 x 508 x 12.7 mm weldments and from
the 914 »x 406 = 12.7 mm contrel weldment was excellent. Onoe again,
this proved that the corrected hole—-drilling technique was comparable
in accuracy to that of the sectioning methed. Figure 20 shows the
residual stress distribution far the four weldments vibrated at 40 H=z,
indicating definite overall stress redistribution due to the wvibratory

treatment, whether the stress was measured by the sectioning or by the

blind-hole—drilling technique.

4.2.5, Effect on Macrostresses

It has been shown in a number of investigations®®*™" that actual
stress reduction occcurs during vibrational treatments only in those
locations where the combined residual wvibratory stresses exceeded
the yield point of the material. Usually these locations were where
high stress concentration occurs, like the region adjacent to a weld.
However, if the entire part being wibrated had a uniform stress level,
a level close to the yield point of the material, will the wvibratory
treatment reduce the =tress level? In order to test the action of
vibratory treatment on high, uniform macrostresses, the tension weld—
ment shewn in Figure 4 was wvibrated at its rescnance. Table VIII sheows
the stress walues cbtained at three locations by the corrected hole
drilling method. It can be seen that the plate developed an average

residual tensile stress of about 234 MPa in a direction parallel to
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its length. The stresses measured using a mechanical extensometer
also were approximately the same. There was virtually no transverse
stress developed in the plate. On wvibrating at a resonant frequency

of 37 Hz for 20 minutes, the awverage residual tensile stress dropped

to about 179 MPa.

4.3. Microstructural Analysis

Although it has been often proposed by a number of investiga—
tors”’"® that peak residual stresses are reduced when combined
residual and wvibratory stresses exceed the yield point of the mater-
izl, there are no direct ocbservations of the evidence of the attendant
plastic deformation. This is surprising, considering the interest in
the industrial usage of wvibratory stress relief techniques. To date,
only Prchaszka, et al.," explained their cbserved stress relief due
to wibration by the dislocation theory. However, even they have not
reported direct microscopic examination of the dislocation behavior
they proposed.

In this investigation transmission electron microscopic analysis
was done to observe the dislocation nature in kboth annealed and in
vibrated samples. Due to the complex nature of microstructure next
to a weld, the cbservation and interpretation of dislecation struec-
tures were extremely difficult. However, due to the ohserved reduc-
tion of the stresses in the A—36 tension plate weldment, samples for
microscopic examination were cbtained from the tension plate. Since

the plate was in an annealed condition, before introducing tensile
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stresses, any change in dislocation substructure could be directly
compared with that from an annealed A—36 mild steel sample for quali-
tative assessment. Quantitatiwve dislocation density measurements were
not made.

Figure 21 shows the microstructure of annealed A—36 samples. At
low magnifications (Figures 2la and 21b) very few dislocations can be
seen within ferrite grains. A high magnification micrograph (Figure
21c) shows a region where dislocations exist in close proximity to
one ancother; they are all relatively straight, showing the absence of
long range internal stresses.

Figure 22 shows the typical disloecation structure ocbserved in
samples that were vibrationally treated. Figure 22a is a low magni-
fication micrograph showing extensive dislocation network within a
ferrite grain. At higher magnifications (Figures 2Z2b,c,d) warious
dislocation interactions can be seen. The obvious increase in dislo-
cation density is definite proof of the plastic deformation that
accompanied the stress reduction by vibratory treatments.

In the absence of quantitative dislocation density measurement
studies, attempts were made to estimate the percentage of plastic
deformation by comparing the microstructure of vibrated samples to
that from tensile samples loaded to 3.2, 6.8 and 23.7% plastic
strain. The compariscn indicated an approximate plastic strain of
4 to 5%,

Thus, for the first time, direct ewvidence of plastic deformation
as a result of stress reduction by vibration was found by transmission

electron microscopy studies.
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Figure 21. Transmission electron micrographs of the annealed
A-36 miid steel samples.
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Figure 22. Transmission electron micrographs of samples abtained from
the resonance vibration treated A-36 mild steel plate,
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4.4 Effect on Mechanical Properties
One of the main concerns of the usage of wvibratory techniques of

7 In mest instances,

stress relief is potential fatigue damage.’
fatigue failure is due to already—present cracks which open up upon
vibratingﬂi In actual practice, there are very few reports of damage
of vibrated parts due to fatigue failure.

In order to test the effect of wibration on fatigue properties
in the case of welds that showed pronounced stress redistribution,
fatigue tests were conducted using samples cobtained from the three
914 x 406 x 12.7 mm weldments. Figures 23, 24 and 25 shown the 5N
curves for the samples from controcl weldment, weldment wvibrated at
30 Hz and at 40 Hz respectively. Tensile testing was alsc performed
on these weldments and the summary of results is shown in Table 9.
The fatigue limit did neot change as a result of either the sub—
rescnance or the resonance treatment. The tensile stress remained
the same. Howewver, there was a slight increase in the yield strength
of about 38 MPa as a result of the resonance treatment. This result

is consistent with the cbservation of plastic deformation, which

could lead to work hardening and hence, an increase in yield strength.
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CHAPTER 5

CONCLUSIONS

The following conclusions were drawn from this investigation:

1. Vibrateory stress relief treatment performed at the resonant
frequency effectively redistributed the residual stresses in BA—36 butt
weldments.

2. The sub—resonance treatment apparently was less effective
than the treatment at the rescnant fregquency.

3. When a wvibration table i=s used to treat smaller samples, the
effectiveness of the treatment was the same irrespective of the
location of the sample.

4, BAs a result of the treatments, a reduction of about 30% was
noticed in peak longitudinal residual stresses in A—36 butt weldments.

5., Unlike some of the thermal treatments, residual stresses did
not wanish as a result of the wvibratory treatment.

6. Transmission electron microscopy studies indicated that the
mechanism by which peak—stress reduction occurs is one of plastic
deformation.

7. There was no fatigue damage as a result of the wibratory
treatment.

8. The tensile properties of the weldment did not change as a

result of the treatment.



B6.

9., Hole—-drilling technigques can be effectively used to measure
yield peoint lewel stresses by taking into account the machining strains
and the strains due to local yielding as a result of stress concentra-

tien.

10. The accuracy of the corrected hole—drilling technique

approached that of a sectioning methed.
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CORRECTIONS FOR EBLIND-HOLE-DRILLING ANALYSIS

Since the hole—drilling technigque of residual stress measurement
was employed to monitor the stress distribution near a weld, where the
stresses (especially longitudinal residual stresses) reach yield point
magnitude, an experimental program was carried out to evaluate the
extent of local yielding around the hole. The test procedure was also
used to measure machining strains, if any, developed during the drill-
ing of the hole. The correction factors determined from this experi-
ment were used to modify the hole—drilling results shown in the main

text.

Theoretical Analysis

The theoretical background for the heole—drilling analysis stems

from the work of Kirsch.!® His salution for the stress distribution
around a circular through hole in a thin, wide, linear elastic and
isotropic plate is used, since a theoretical solution for the strain
at any peoint on the surface for a blind hole is not known. For a
plate subjected teo uniaxial tension, 8, Kirsch's sclution may be

written as:

[ -
s_ -«g— (l -&4-—) + (14 22 + 3/16 \%) cos 28] X
S ~Sr1+;":i 4
8 =3 " - {1+ 3/16 A%) cos 28|, (1)

._S % "
Srﬁ -il(l Ll 3/16 A ) cos 2E]
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Where:
8., Sp, 8. are the radial, tangemntial and shear-stress cocmpon-
ents of 8, and is the nondimensiocnal hole diameter defined by 2,. / R
(see Figure Al)
The strain distribution around the hole after drilling is given

by

1
E. =5 {_Sr - ,vsa}

I
(2)
g, = 1 (5. - vs )
g E 0 T
while the strain distribution before drilling may be written as
4P .5 (cos?8 - v sin?8)
T E
(3)
o = E Z2a o 2
Eg = (sin“0 - v cos®6)

Strain gauges may be used to detect the change in strain result-
ing from drilling the hole. This change, defined as “relaxation strain,”
will be denocted by ey and €4 in the radial and tangential directicns,
respectively. It should be noted that ey, and e, are the net relaxa-
tion strains due to the stress (applied and/or residual). Relaxation

strains are defined as

(4)
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Figure A1. Strain gauge rosette arrangement and the blind-hole
geomelry for determining residual stresses.
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Substitutions of equaticons (1), (2) and (3) into egquation (4)

yields
5
rr " X E
(5)
o = Ko 3

Where K, and K; are nondimensional quantities called relaxation coeffi-

cients and given by

K_=- il_g_ﬁl 1 Rl T T ¢ _.giéii—ﬂl A4 | cos?a

- -

(6)

K, =-@12+ 1/2 A2 hﬂw 24 | cos2e

- E

The equations used in the main text for residual stress measurement
can be derived using equations (1) through (4).

Examining equation (5), it can be seen that for a given stress,
the value of the relaxed strain is directly related to the relaxation
coefficient. In a given experiment, a maximum value of relaxed strain
would minimize errors and hence, the points of measurement (A, 8) of
maximum relaxation coeffienct are recommended. A study of equation
(6) shows that®® although a tangential gauge at 8 = 90° exhibits the
maximum value of relaxation ceoefficient, its use is not advised
because the gauge has to lie very close to the edge of the hele. The
closer the gauge is to the hole, the larger the errors being caused by
machining stresses. This is the primary reason why radial gauges

are used in commercial strain gauges rosettes.
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Practical Considerations

For a given strain gauge—hole assembly and material, it has been
shown from equation (6) that the relaxation coefficient is fixed and
from equation (5), it can be seen that the stress is directly propor-
tional to the relaxation strain. However, the measured strain relaxa-
tion is due not only teo the applied stress but it alsoc includes (a)
relaxation strain due to drilling operation, g, and (b) relaxation
strain due to localized plastic flow, =

The relaxation strain component g, results from machining resid-
ual stresses. Such stresses depend on the drilling conditions and

1
For

are highly localized in the immediate vicinity of the hole.?
steel, £, has been found to be about —40 pe. 77"

The relaxation strain component g, is produced only if the stress
field around the hole iz disturbed by localized plastic flow, A=
shown in Figure A2, in uniaxial loading, the stress concentration
factoer at 8 = 90° is 3 while foer & = 0, it is -1. As the nominal
stress exceeds 1/3 of the yield strength, plastic flow will start at
the hole edge at 8 = 90° and the Kirsch’s elastic solution is no
longer walid.

However, it is always possible to determine the deviation of
the elastic estimate from the true walue of stress. If the error i=s

acceptable, the elastic solution may be practically used for deter-

mining stresses beyond 1/3 of the yield strength.
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It can be seen that g; will always increase the absclute walue of
the net relaxation strain, regardless of its sign. Thus, if the
relaxation strain £, is neglected, the measured stress, being tensile or
compressive, will always be overestimated. The presence of g, ,
being neglected, will lead to unrealistic and misleading results.

This may be illustrated with the aid of Figure A3. Assume that a
uniform stress S,,, > 1/3 S, is measured by drilling a hole and record—
ing a total relaxation strain ac. If ac is considered entirely due to
the existing stress, direct substitution in equation (5) gives a

higher stress 8.,,.' = E/K, ac.= E/K, a'b’ , where line cb’ is drawn
parallel to eslastic line. Howewver, if g/ =_EE_is realized, then the
true stress will be S,, = E/K, ab and the error in estimating S,

will ke equal te Be / 3B, i.e., g, / # . Similar analysis can be done
for a compressive stress. Correction for g; is required for stresses

that are in excess of 1/3 Sy or of a limit to be determined from

experiments.

Experimental

Tc determine the walues of relaxation components g, and g, , two
6.35 mm thick annealed A—36 mild steel samples were used.
Specimen dimensions and strain gauge layout are shown in Figure A4.
A strain gauge rosette (type EA—06—125RE—120) was bonded at the center
of the gauge length. The elements of this rosette are shown as 1, 2
and 3 in the figure. Four control gauges a, b, ¢ and d (type EA—-06&6—

125AD—120) were also bonded, to measure the magnitude of the uniform
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localized yielding near the hole.
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stress field. The sample was gripped by loading pins, to eliminate the
bending stresses. MAccurate drilling was done using a Photolastic model
RS—200 milling guide.

Testing consisted primarily of increasing the hole size by drill-
ing and, at each increment, loading the specimen through a number of
applied stress levels and recording the associated strain gauge read-
ings.

In the first experiment conducted to evaluate the machining
effect, the hole size was increased from 0.8 mm to 4.4 mm. At each
hole size, the sample was loaded a stress value equal to 0.3 times the
yield strength. In the second experiment, the second sample was
loaded up to 0.7 times the yield strength wvalue. The actual diameter
of the drilled hole was accurately measured with a microscope

inserted into the toal guide,

Discussion

Machining Effect

The results of the first set of experiments are given in Tables A—I
and A-II and Figures AS and A6. The relaxation strain due teo machining,
€, . Was determined by extrapolating the linear strain—stress relations
to zero stress level and measuring the intercepts. Figures A7 and ASB
determined from Figures A5 and A6, respectively, show the wariaticn of
€, with the drilling clearance, C,;. The drilling clearance is the
distance between the hole edge, where maximum machining stresses exist,

and the near end of the gauge matrix.
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Figure A5. Plot of average sirain vs. applied stress for the parailel gauge.
@, to @, are diameters of the holes drilled.
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As mentioned before, the highly localized nature of machining
stresses is evident. In a situation where preformed strain gauge
rosettes cannot be used, precise locations of the strain gauges near
the hole are demanded. Hole diameter larger than the suggested 1/8
inch (3.175 mm) diameter, introduced abnormally high machining stresses
and hence, in the second set of experiments the maximum hole size was
limited to the suggested wvalue of 3.175 mm. For this hole size, the
machining strains were —40 pe and —30 pe for gauges 1 and respectively.
Slightly lower walues of g, for gauge 3 could be due to the transverse
sensitivity of the gauge. These wvalues of g, for steel agree well with
the values cbtained by others.’'? Also, machining stresses seem to be
independent of the stress to be measured, since g, has the =ame =ign

regardless of the sign of total relaxation strain.

Localized Plastic Flow Effect

The results of the second set of experiments are given in Tables
A—IIT and A—IV, and are plotted in Figures A9 and Al0. An examination
of the results of Figqures A% and Al0 suggests the following:

l. As the stress exceeds a certain value, the strain—stress
relations generally deviate from linearity causing the absolute walue
of relaxation strain to increase. This critical stress is dependent
on the hole size and the strain gauge location, or more conveniently,
Cy. The locus of the critical stress that can be measured without

error due to localized plastic yielding at the hole edge is shown to
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Figure A9. Plot of average strain vs. applied stress for parallel gauge.
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Figure A10, Plot of average strzin vs. applied stress for transverse gauge.
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be a function of the gauge orientation €. It may be seen that these
loci are asymptotic to 1/2 o, and 1/3 o, in the parallel and transverse
directions, respectiwvely.

2. The interpretations of the experimental results may proceed
from the principles enunciated in Figure A3, Figures All and AlZ2 are
thus constructed from Figures A9 and Al0. It may be seen from Figure
Al2 that a stress of 0.7 5, may be overestimated by as much as 35%
when 2.175 mm drill bits are used. The trend of dewviation
predicts that the error will drastically increase as the stress
approaches the yield strength. Parallel gauges, Figure All, show a
corresponding error of approximately 13%. Therefore, extrems caution
must be exercised when using transverse gauges in measurements of
stresses higher than 1/3 the yield stress of material. However,
with the strain gauge rosette—hole size combination used in the main
text, stresses of the order of 0.45 3, can be measured with an overall

errocr of 10%.

Recommendations

The machining induced strain for the strain gauge rosette (type
EA-06-125RE-120)and the 3.175 mm drill kit combinaticon is on an average
—35 pe. This wvalue must be subtracted from all the net strain relaxa-
tion readings recorded in the hele drilling experiments.

The errors due to localized plastic flow effect can be corrected
from the results shown in Figures All and Al2. Thus, if the yield

stress, 5,, of the material is 275.8 MPa, a true residual stress
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of 193.1 MPa, which is 0.7 5;, will be exaggerated by about 35% to a
wvalue of 262 MPa by a transwverse gauge, whereas a parallel gauge will
exaggerate it to about 220.6&6 MPa.

For example, consider the reading from rosette #1 of weldment 1
in the as—welded condition. In the feollowing Takle A—V, the successive
changes in the stress that ocour as a result of modification of the

three relaxed strains are shown.
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